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Abstract
As shown by Johannes Kepler in 1609, in the two-body problem, the shape of the
orbit, a given ellipse, and a given non-vanishing constant angular momentum
determine the motion of the planet completely. Even in the three-body problem,
in some cases, the shape of the orbit, conservation of the center of mass and
a constant of motion (the angular momentum or the total energy) determine
the motion of the three bodies. We show, by a geometrical method, that
choreographic motions, in which equal mass three bodies chase each other
around the same curve, will be uniquely determined for the following two
cases. (i) Convex curves that have point symmetry and non-vanishing angular
momentum are given. (ii) Eight-shaped curves which are similar to the curve
for the figure-eight solution and the energy constant are given. The reality of
the motion should be tested whether the motion satisfies an equation of motion
or not. Extensions of the method for generic curves are shown. The extended
methods are applicable to generic curves which do not have point symmetry.
Each body may have its own curve and its own non-vanishing masses.

PACS numbers: 45.20.Dd, 45.50.Jf, 95.10.Ce

1. Introduction

The three-body figure-eight solution is one of the solutions of the planar equal mass three-body
problem under the Newtonian gravity. In this solution, three bodies chase each other around a
fixed eight-shaped curve. It was found numerically by Moore [1] and its existence was proved
by Chenciner and Montgomery [2].

Only a little is known about the eight-shaped curve. Simó showed numerically that
the curve cannot be expressed by algebraic curves of orders 4, 6, 8 [3, 4]. Chenciner and
Montgomery [2] showed that the curve is a ‘star shape’, namely a ray from the origin meets
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the curve at most once. Fujiwara and Montgomery [5] proved that each lobe of the eight-shaped
curve is convex.

On the other hand, the present authors found a parameterization qi(t) = (xi(t), yi(t)) of
the lemniscate of Bernoulli (x2 + y2)2 = x2 − y2, which satisfies an equation of motion under
an inhomogeneous potential [6]:

d2qi

dt2
= −∂V

∂qi

, (1)

V =
∑
i<j

(
1

2
ln rij −

√
3

24
r2
ij

)
, (2)

where rij = |qi − qj | is the mutual distance between the body i and j .
An interesting point of their approach is that they started the arguments from the lemniscate

curve, without any assumption for the potential. They showed that there is a parameterization
qi(t) of the curve that keeps the geometric center of mass being at the origin

∑
i qi(t) = 0

and keeps the angular momentum being zero
∑

qi(t) × dqi(t)/dt = 0 for all t. Using this
parameterization, they searched for what kind of potential can support this motion. Finally,
they found the potential (2).

Then a question arises. Does a similar approach work for other eight-shaped curves?
Namely, can we determine the three-body motion qi(t) if the shape of the orbit for the
figure-eight solution is known?

This approach works for the two-body problem as shown by Johannes Kepler in
‘Astronomia Nova’ published in 1609. In his book, he stated the first law, planets move
in the elliptical curve with the sun at one focus. Then his second law, which is now known as
the conservation of the angular momentum, determines the motion of a planet in the ellipse if
non-vanishing constant angular momentum is given.

In this paper, we show that this approach works in the three-body problem. Namely, for
some curves, conservation of the center of mass and a constant of the motion (the angular
momentum or the total energy) determine the three-body motion. Here, in the two-body
problem, the total energy constant, instead of vanishing angular momentum, determines the
motion if the orbit is linear.

To demonstrate the main idea, let us observe how the condition for geometrical center of
mass being at the origin,

q1 + q2 + q3 = 0, (3)

determines the mutual positions of the three bodies. Let us consider a unit circle |z| = 1
in the complex plane and a position q3 = exp(iφ) on the circle. We know that the
set of two points {q1, q2} on the same circle that satisfy q1 + q2 + q3 = 0 is {q1, q2} =
{exp(i(φ + 2π/3)), exp(i(φ − 2π/3))}. On the other hand, it is obvious that the two points
are the cross points of the original circle |z| = 1 and the unit circle |z + q3| = 1, which is the
parallel translation z �→ z − q3 of the original circle.

One of the authors, Ozaki, noted that this is not an accident. He found the following
theorem.

Theorem 1 (Construction of three points). If a curve γ in R
d with d = 2, 3, 4, . . . is invariant

under the inversion q �→ −q, then the set {{q1, q2}|q1, q2 ∈ γ, q1 + q2 + q3 = 0} for a given
q3 ∈ γ is equal to the set {{q, q∗}|q ∈ γ ∩ γ‖} where γ‖ is the parallel translation q �→ q − q3

of the curve γ and q∗ = −q − q3.

2
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This theorem gives us a method to find three points q1, q2, q3 with q1 + q2 + q3 = 0 on a point
symmetric curve with respect to the origin. This theorem states that for such a curve and for a
given q3 ∈ γ , (i) if there is a pair q1, q2 ∈ γ that satisfies q1 + q2 + q3 = 0, then the points q1

and q2 should be the cross points of γ and γ‖, and inversely, (ii) if a cross point q of γ and γ‖
exists, then the point q∗ = −q −q3 is also a cross point of the same curves, and q +q∗ +q3 = 0
is satisfied.

See figures 2, 4, 6 and 7. Figure 2 shows the situation for a convex curve that is invariant
under q �→ −q. This figure suggests that the pair of the cross points {q1, q2} = {q, q∗},
namely the solution of q1 + q2 + q3 = 0, is unique for q3 ∈ γ . Figures 4, 6 and 7 show
the situation for an eight-shaped curve. These figures suggest that there are two pairs of the
cross points: trivial pair {O,−q3}, in which three points −q3,O and q3 are collinear and one
non-trivial pair {q1, q2}.

For these cases, we can show that the (non-trivial) pair {q1, q2} is determined uniquely
for a given q3 ∈ γ . Moreover, we can show that if we move q3 around the whole curve,
the points q1 and q2 move smoothly and strongly monotonically around the whole curve
without collisions. Thus, the motion around such a curve is determined uniquely modulo time
re-parameterization, qi(t) �→ qi(τ (t)) with a function τ(t).

In section 2, proofs of theorem 1 are given. In theorem 1, the points q1 and q2 are assumed
to be constrained on a same curve, the curve is assumed to be point symmetric and the three
bodies are assumed to have the same mass. We can remove there assumptions. Extensions
of theorem 1 are also given in section 2. In section 3, considering the geometrical property
of the cross points of the convex curve and its translation we prove the uniqueness and the
smoothness of {q1, q2} for a given q3. Then we show that motions of equal mass three bodies
in planar point symmetric convex curves with respect to the origin are uniquely determined
if non-vanishing angular momentum is given. In section 4, we show, the main result, the
uniqueness of the motions of equal mass three bodies in planar eight-shaped curves if the
energy constant is given. Section 5 presents the summary and discussions.

2. Constructions of three points

In this section, we prove some geometrical constructions of three points whose geometrical
center of mass is fixed to the origin, namely theorem 1 and its extensions.

Theorem 1 is a corollary of the following more general theorem.

Theorem 2. For a given set γ1, γ2 ⊂ R
d and q3 ∈ R

d , we have the following equalities:

{{q1, q2}|q1 ∈ γ1, q2 ∈ γ2, q1 + q2 + q3 = 0} = {{q1, q
∗
1 }|q1 ∈ γ1 ∩ γ ∗

2 } (4)

= {{q2, q
∗
2 }|q2 ∈ γ ∗

1 ∩ γ2}, (5)

where ∗ represents a map q �→ q∗ = −q − q3 and γ ∗ is the image of γ by this map.

Proof of theorem 2. We prove equation (4). The proof for equation (5) is similar. If q1 and
q2 satisfy q1 ∈ γ1, q2 ∈ γ2 and q1 + q2 + q3 = 0, then q1 = −q2 − q3 = q∗

2 ∈ γ ∗
2 . Therefore,

q1 ∈ γ1 ∩ γ ∗
2 and q2 = q∗

1 . Inversely, if q1 and q2 are given by q1 ∈ γ1 ∩ γ ∗
2 and q2 = q∗

1 , then
q1 ∈ γ1 ∩ γ ∗

2 ⊂ γ1 and q2 = q∗
1 ∈ γ ∗

1 ∩ γ2 ⊂ γ2. Moreover, by the definition of q2 = q∗
1 we

get q1 + q2 + q3 = 0. �

If q1, q2 and q3 move around the same set γ , we have the following corollary by simply
making γ1 = γ2 = γ .

3
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Figure 1. The curve γ ∗ that is the image of γ by the map q �→ q∗ = −q − q3 can be drawn by
two ways. (i) Make the inversion of γ with respect to the point −q3/2. (ii) Draw the inversion
q �→ −q of γ with respect to the origin to get γ ′. Then make parallel translation q �→ q − q3 of
γ ′.

Corollary 3. For a given set γ ⊂ R
d and q3 ∈ γ , we have the following equality:

{{q1, q2}|q1, q2 ∈ γ, q1 + q2 + q3 = 0} = {{q, q∗}|q ∈ γ ∩ γ ∗}. (6)

We do not assume any symmetry for the set γ in this corollary. So, this corollary can be used
to make equal mass three-body motions in given curves with no symmetry.

Proof of theorem 1. Note that the map q �→ q∗ = −q − q3 can be decomposed into the map
q �→ −q followed by the map q �→ q − q3. Therefore, the curve γ ∗ can be made by the two
steps. First make inversion γ ′ of γ by q �→ −q, then make parallel translation γ ′

‖ of γ ′ by
q �→ q − q3. See figure 1. For the case when γ is invariant under the inversion, q �→ −q;
then γ ′ = γ and γ ∗ = γ‖. Thus, we get a proof of theorem 1. �

Remark for corollary 3 and theorem 1. In the above proof, the condition q3 ∈ γ is not used.
Actually, corollary 3 and theorem 1 are true for q3 ∈ R

d .

Remark for theorem 2. For three bodies with general masses mi �= 0, the center of mass
being at the origin is defined by∑

i=1,2,3

miqi = 0. (7)

For this case, let

q̃i = miqi (8)

and γ̃i be the image of the curves γi by the map qi �→ q̃i = miqi . Then the conditions
q1 ∈ γ1, q2 ∈ γ2 and equation (7) are equivalent to q̃1 ∈ γ̃1, q̃2 ∈ γ̃2 and∑

i=1,2,3

q̃i = 0, (9)

respectively. Then we can apply theorem 2 for q̃i and γ̃i . Once we find the positions q̃1 and
q̃2, we get the positions qi = m−1

i q̃i for i = 1, 2.
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Figure 2. The closed convex curve γ is point symmetric with respect to the origin O. For a given
point q3 ∈ γ , the two points on γ that satisfy q1 + q2 + q3 = 0 are given by the cross points of γ

and γ‖.

3. Three-body choreography in a point symmetric convex curve

3.1. Motion in a point symmetric convex curve

In this subsection, as a simple application of theorem 1, we construct an equal mass three-body
motion in a given closed convex curve γ that is invariant under the inversion q �→ −q. We
assume that the curvature is not zero everywhere on γ .

Theorem 4. If a closed planar convex curve γ is invariant under the inversion q �→ −q and
its curvature is not zero everywhere on γ , the solutions of q1 + q2 + q3 = 0 with q1, q2 ∈ γ for
a given q3 ∈ γ are unique. Moreover, when q3 moves around γ , the motion qi(σ ), i = 1, 2,

are smooth, i.e. |dqi/dσ | < ∞, and strongly monotonic, i.e. dqi/dσ �= 0, where σ is the curve
length for q3.

For a given q3 ∈ γ , the pair of positions {q1, q2} is given by theorem 1 as {q1, q2} = {q, q∗}.
First, we show the uniqueness of the pair {q1, q2}. As shown in figure 2, the map q �→ q − q3

maps q3 ∈ γ to the origin O,O to the point −q3 ∈ γ − γ‖ and −q3 to the −2q3 ∈ γ‖ − γ .
Therefore, the curve γ‖ starts at the origin O which is surrounded by γ and passes the point

−2q3 which is outside of γ . Then there are at least two points in γ ∩ γ‖. On the other hand,
γ ∩ γ‖ has at most two elements by lemma 2 in appendix A. Therefore, γ ∩ γ‖ has exactly
two elements. Thus, we find a unique pair {q1, q2} = {q, q∗} that satisfies q1 + q2 + q3 = 0 by
theorem 1.

Let us move the point q3 around the whole curve to one direction, namely using the curve
length σ for q3,

q3 = q3(σ ) with

∣∣∣∣dq3

dσ

∣∣∣∣ = 1. (10)

Then q1 and q2 are uniquely parameterized by the same parameter σ . To prove that qi(σ ) for
i = 1, 2 are smooth and strongly monotonic functions of σ , i.e.∣∣∣∣dqi(σ )

dσ

∣∣∣∣ < ∞ and
dqi(σ )

dσ
�= 0, (11)

note that when q3 moves around γ with some speed, γ‖ moves to the opposite direction with
the same speed since the center of γ‖ is −q3. Therefore,

5
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Figure 3. Lemma 1 for the closed convex curve with point symmetry. We denote one of the cross
points of γ and γ‖ by q. (i) The parallelogram αq + βq3, 0 � α, β � 1, is included inside γ ; thus,
at q, the tangent line to the curve γ passes through the shaded area, while the tangent line to the
curve γ‖ at q passes in the non-shaded area because the parallelogram αq − βq3, 0 � α, β � 1, is
included inside the γ‖. Therefore, the tangent lines at q to the lines γ and γ‖ are distinct. (ii) The
parallelogram −αq − βq3, 0 � α, β � 1, is included inside γ ; thus the tangent line to the curve
γ at −q3 passes through the shaded area. Therefore, the tangent line to γ‖ at q and the tangent line
to γ at −q3 are not parallel.

Lemma 1. In theorem 1, (i) if the tangent lines to the curves γ and γ‖ at q are distinct, then
q(σ ) and q∗(σ ) are smooth functions of σ where σ is the curve length for q3. (ii) Further, if
the tangent line to the curve γ at −q3 is not parallel to the tangent line to the curve γ‖ at q,
then q(σ ) and q∗(σ ) are smooth and strongly monotonic function of σ .

For γ in theorem 4, from figure 3 it is clear that both conditions (i) and (ii) are satisfied
for all q3 ∈ γ ; therefore, q1(σ ) and q2(σ ) are smooth and strongly monotonic by lemma 1.
Then theorem 4 is proved.

Now we demand the angular momentum

c =
∑

i=1,2,3

qi(σ (t)) × dqi(σ (t))

dt
= dσ

dt

∑
i=1,2,3

qi(σ ) × dqi(σ )

dσ
(12)

to be constant in order to investigate the motion in γ . For the convex curve, we have

J (σ ) =
∑

i=1,2,3

qi(σ ) × dqi(σ )

dσ
�= 0. (13)

This is because, if J (σ ) = 0, three tangent lines must meet at a point by the three tangents
theorem found by the present authors [5–7], whereas there are at most two tangent lines to the
convex curve from one point. Thus, the time dependence of σ is determined by

dσ

dt
= c

J (σ )
. (14)

Accordingly, the motion qi(σ (t)) is determined uniquely by c.
Since J (σ ) �= 0, the sign of dσ/dt is fixed. Let us take the sign of c be positive, then the

points qi(σ (t)) move anti-clockwise. By the uniqueness of {q1, q2} if q3 moves around the
whole γ , the other points q1 and q2 move around the whole curve without collision. So, we
can name the three points q1, q2 and q3 in anti-clockwise order.

6
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In the following, we write qi(t) = qi(σ (t)) for simplicity. At time t = 0, the three points
are at qi(0). As time passes, the point q1(t) moves around the curve toward the point q2(0),
and at some time t0, q1(t) reaches to the point q2(0). Then we have

q1(t0) = q2(0), q2(t0) = q3(0), q3(t0) = q1(0), (15)

because one position determines the other two positions uniquely. Then the motion for
t0 � t � 2t0 is also determined by the motion qi(t) for 0 � t � t0 as follows,

q1(t) = q2(t − t0), q2(t) = q3(t − t0), q3(t) = q1(t − t0), (16)

because again one position determines the other two positions uniquely and the name shifts
1 → 2, 2 → 3 and 3 → 1 are equivalent to the time shift t → t + t0.

We can proceed the same step over and over again; therefore, we have a periodic motion
of qi(t) with the period T = 3t0 and the motion is described by

q1(t) = q1(t), q2(t) = q1(t + T/3), q3(t) = q1(t + 2T/3). (17)

We would like to call this periodic motion with an equal time spacing a ‘choreography’ in the
point symmetric convex curve. We should note that there is no guarantee for this motion to
satisfy some equation of motion.

3.2. Three-body choreography in an ellipse

In this subsection, let us assume the curve γ is an ellipse

x2

a2
+

y2

b2
= 1 (18)

with constants a, b > 0. This is convex and invariant under the inversion with respect to the
origin, (x, y) �→ (−x,−y). Therefore, by theorem 4, three-body choreography in this curve
satisfying q1 + q2 + q3 = 0 with constant angular momentum c is determined uniquely. For
this case, we can construct a choreography explicitly and show that this choreography satisfies
the equation of motion for harmonic oscillators.

This ellipse is parameterized by

q(τ) = (x(τ ), y(τ )) = (a cos(τ ), b sin(τ )) (19)

with an arbitrary parameter τ . Then the points

q1(τ ) = q(τ), q2(τ ) = q(τ + 2π/3), q3(τ ) = q(τ + 4π/3) (20)

satisfy q1 + q2 + q3 = 0. Since

q(t) × dq(τ)

dτ
= ab, (21)

we get ∑
qi(τ ) × dqi(τ )

dτ
= 3ab. (22)

Therefore, the equation c = dτ/dt
∑

qi(τ ) × dqi(τ )/dτ determines

dτ

dt
= c

3ab
. (23)

Thus, the three-body choreography in the ellipse is uniquely determined by

q(t) = (a cos(ωt), b sin(ωt)), with ω = c

3ab
(24)

7
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and

q1(t) = q(t), q2(t) = q

(
t +

2π

3ω

)
, q3(t) = q

(
t +

4π

3ω

)
(25)

Obviously, qi(t) satisfies the equation of motion for the harmonic oscillator

d2qi(t)

dt2
= −ω2qi(t). (26)

Using q1 + q2 + q3 = 0, we get qi = ∑
j �=i (qi − qj )/3. Therefore, qi satisfy the following

equations of motion:

d2qi

dt2
= ω2

3

∑
j �=i

(qj − qi) = −∂V

∂qi

, (27)

with

V = ω2

6

∑
i �=j

|qi − qj |2. (28)

Therefore, the choreography in an ellipse is realized by the Hamiltonian

H =
∑

i

|pi |2
2

+
ω2

6

∑
i �=j

|qi − qj |2. (29)

For this choreography, the kinetic energy K, the potential energy V and the moment of inertia
I are the following constants:

K = 1

2

∑
i

∣∣∣∣dqi

dt

∣∣∣∣
2

= 3ω2

4
(a2 + b2), (30)

V = ω2

6

∑
i �=j

|qi − qj |2 = 3ω2

4
(a2 + b2), (31)

I =
∑

i

|qi |2 = 3

2
(a2 + b2), (32)

respectively.

4. Three-body choreography in an eight-shaped curve

We consider the eight-shaped curve γ defined by the following properties. (I) γ is invariant
under the inversion x �→ −x or y �→ −y. (II) The three points O = (0, 0) and (±1, 0) are
on γ . (III) In the first quadrant, γ is described by a function as (x, f (x)) for 0 � x � 1 that
satisfies f (0) = f (1) = 0 and f (x) > 0 for 0 < x < 1. (IV) For the smoothness of the
curve:

f ′(0) = lim
x→+0

f ′(x) > 0 and lim
x→1−0

f ′(x) → −∞. (33)

These properties (I)–(IV) are acceptable as those for the usual eight-shaped curves.
We look for the solution q1, q2 ∈ γ satisfying q1 + q2 + q3 = 0 for a given q3 ∈ γ in

the cross points γ ∩ γ‖ according to theorem 1. Since the origin O ∈ γ , we find the trivial
solution {q1, q2} = {O,−q3} for q3 ∈ γ in which the three points q3,O and −q3 are collinear.

8
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See figures 4, 6 and 7. This trivial solution, however, has no physical importance since it does
not conserve the angular momentum∑

i=1,2,3

qi × dqi

dt
= 0 × 0 + (−q3) × d(−q3)

dt
+ q3 × dq3

dt
= 2q3 × dq3

dt
, (34)

which changes the sign at q3 = 0. Moreover, these three points will go to the three-body
collision at the origin when q3 → O.

On the other hand, figures 4 and 7 suggest that there is just one non-trivial solution
q1, q2 ∈ γ satisfying q1 + q2 + q3 = 0 for a given q3 ∈ γ − {0}. In the rest of this section,
we will show that if the eight-shaped curve γ has some sufficient conditions, the non-trivial
pair {q1, q2} is unique, smooth and strongly monotonic. The sufficient conditions are the
followings. (V) The curvature of the curve is negative, namely f ′′(x) < 0 for 0 < x < 1.
(VI) The third derivative is also negative, f ′′′(x) < 0 for 0 < x < 1.

Before describing the next theorem, note that conditions (IV) and (V) imply that there is
a unique value of x = a0 with 0 < a0 < 1 that satisfies

f ′(a0) = −f ′(0). (35)

We write the point (a0, f (a0)) = p0.

Theorem 5. If an eight-shaped curve γ which is invariant under inversion x �→ −x or
y �→ −y is described in the first quadrant by a curve (x, f (x)) with 0 � x � 1 that satisfies
f (0) = f (1) = 0, f ′(0) is positive finite, f ′(x) → −∞ for x → 1 − 0 and for 0 < x < 1

f (x) > 0, f ′′(x) < 0, f ′′′(x) < 0, (36)

the solutions of q1 + q2 + q3 = 0 with q1, q2 ∈ γ for a given q3 ∈ γ − {0} are two
pairs, trivial one {q1, q2} = {O,−q3} and non-trivial one {q1, q2} = {q, q∗}. For the
case q3 = p0 = (a0, f (a0)), the trivial pair and the non-trivial pair are coincident, {q1, q2} =
{O,−p0} = {q, q∗} where a0 is the unique solution of f ′(a0) = −f ′(0), 0 < a0 < 1.
When q3 moves around γ , the motion qi(σ ), i = 1, 2, of the non-trivial pair are smooth, i.e.
|dqi/dσ | < ∞, and strongly monotonic i.e. dqi/dσ �= 0 where σ is the curve length for q3.

A proof of this theorem will be given in the following subsections.
As mentioned in section 3.1, the motion of non-trivial pair in this theorem is uniquely

parameterized as qi(σ (t)) by the curve length σ(t) of q3. Since the total area of an eight-
shaped curve is zero, the constant angular momentum should be zero. Thus, unlike section 3,
the equation c = 0 gives no information for dσ/dt . Although vanishing angular momentum
does not determine the speed of the motion, it imposes a strong constraint on the shape of
curve γ . Namely, by the three tangents theorem [5–7], three tangent lines at qi(σ ) must meet
at a point for each σ .

Then we use the energy constant assuming some potential energy V :

V =
∑
i<j

U(|qi − qj |) (37)

to determine σ(t) by the Hamiltonian H:

H = 1

2

(
dσ

dt

)2 ∑
i=1,2,3

∣∣∣∣dqi(σ )

dσ

∣∣∣∣
2

+ V = constant. (38)

This condition H = constant determines the motion completely, although this motion is
not guaranteed to satisfy the equation of motion derived from this Hamiltonian. Following
the argument in section 3, for eight-shaped curves, again the motion qi(σ (t)) is determined

9
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q1q2

p0

O

Figure 4. The curves γ (solid line) and γ‖ (dashed line) for 0 < a < a0 where q3 = (a, f (a)).
Solid black and gray circles represent q3 and p0 respectively. Hollow circles represent the trivial
solution {O, −q3} and the solid square represents the non-trivial solution {q1, q2}. The line � that
passes through the points O and −q3 splits the plane R

2 into R
2
+, R

2− and the line � itself.

completely as a ‘choreography’. Thus, a ‘choreography’ in an eight-shaped curve is determined
by the curve γ that satisfies the three tangents theorem that ensures the angular momentum
being zero and by the potential energy.

To prove theorem 5, we use theorem 1. For the curve γ , we call the right lobe R and
left lobe L. Similarly, R‖ and L‖ for γ‖. Note that R∗ = L‖ and L∗ = R‖. In the following
subsections, we give a proof of theorem 5 for the cases 0 < a < a0, a = a0 and a0 < a � 1,
where q3 = (a, f (a)), separately.

4.1. For the case 0 < a < a0

See figure 4.

(1) For R ∩ R‖: it is obvious the origin O ∈ R ∩ R‖. Since f ′′(x) < 0 and 0 < a < a0, we
have f ′(0) > f ′(a) > f ′(a0) = −f ′(0). Therefore, R‖ starts the origin to inside of R.
The lobe R‖ cuts the y-axis at (0,−2f (a)) which is obviously outside of R. Therefore,
there is at least one point q1 �= O in R ∩ R‖. Therefore, R ∩ R‖ = {O, q1} by lemma 2
in appendix A.

(2) For L ∩ L‖: by the map q �→ q∗, we get L ∩ L‖ = R∗
‖ ∩ R∗ = {O∗, q∗

1 } = {−q3, q2}.
(3) For L ∩ R‖ = L ∩ L∗: the line � connecting the origin O and −q3 splits the plane R

2 into
three parts, open upper half that we write R

2
+, open lower half R

2
− and the line � itself.

This line also splits L and L∗ into three parts. We will show that L ∩ L∗ ∩ R
2
+ is empty.

To find the number of elements of L ∩ L∗ ∩ R
2
+, let us consider the difference between

the y component of the curve L ∩ R
2
+ and that of the curve L∗ ∩ R

2
+, which is described

by the following function:

g(x, a) = f (−x) − f (x + a) + f (a) (39)

defined in −a < x < 0. In appendix B, we have shown that there is no solution of
g(x, a) = 0 in −a < x < 0 for 0 < a < a0. Therefore, L ∩ L∗ ∩ R

2
+ is empty.

By the map q �→ q∗, the region R
2
+ maps onto the region R

2
−; therefore, L∩L∗ ∩ R

2
−

is also empty. Thus, we get L ∩ L∗ = L ∩ L∗ ∩ � = {O,−q3} since L has at most two
common points with any line.

(4) For R ∩ L‖: R is in the region x � 0, while L‖ = R∗ is in x � −a < 0. Therefore,
R ∩ L‖ is empty.

Summarizing the results of (1)–(4), we conclude that there are one trivial pair {O,−q3} ⊂
γ ∩ γ‖ and one non-trivial pair {q1, q2 = q∗

1 } ⊂ γ ∩ γ‖ for the case 0 < a < a0. The
smoothness and strong monotonicity of qi(σ ) for i = 1, 2 can be proved by lemma 1 referring
to figure 5.

10
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Figure 5. Lemma 1 for the eight-shaped curve for 0 < a < a0. We denote the cross point of R
and R‖ by q. (i) The parallelogram αq + βq3, 0 � α, β � 1, is included inside R; thus, at q, the
tangent line to the curve γ passes through the shaded area, while the tangent line to the curve γ‖ at
q passes in the non-shaded area because the parallelogram αq − βq3, 0 � α, β � 1, is included
inside R‖. Therefore, the tangent lines at q to the lines γ and γ‖ are distinct. (ii) The parallelogram
−αq −βq3, 0 � α, β � 1, is included inside L; thus, the tangent line to the curve γ at −q3 passes
through the shaded area. Therefore, the tangent line to γ‖ at q and the tangent line to γ at −q3 are
not parallel.

p0

−p0

O

Figure 6. The case a = a0. The set γ ∩ γ‖ = {O, −p0}. Two tangent lines �0 and �−p0 split the
plane R

2 into the open regions R
2
L, R

2
M, R

2
R and the lines.

4.2. For the case a = a0

See figure 6. Let the tangent line of the curve at p0 = (a0, f (a0)) be �p0 , and its parallel
translation by q �→ q − p0 and q �→ q − 2p0 be �0 and �−p0 . The lines �0 and �−p0 are the
tangent lines of the curve γ and γ‖ that pass through the origin and −p0 respectively. The
two parallel lines �0 and �−p0 split R

2 into five pieces, three open two-dimensional regions
and two lines. We name the three regions from left to right R

2
L, R

2
M and R

2
R . Obviously,

γ ∩ γ‖ ∩ R
2
L and γ ∩ γ‖ ∩ R

2
R are empty. The set γ ∩ γ‖ ∩ R

2
M is also empty since, by the

same argument for L ∩ L∗ ∩ R
2
+ in the previous subsection, g(x, a0) = 0 has no solution in

−a < x < 0, which is shown in appendix B.
Therefore, γ ∩ γ‖ = γ ∩ γ‖ ∩ (�0 ∪ �−p0) = {O,−p0} for a = a0.

4.3. For the case a0 < a � 1

See figure 7. Similar to section 4.2, let the tangent line of the curve at q3 = (a, f (a)) be �q3 ,
and its parallel translation by q �→ q−q3 and q �→ q−2q3 be �0 and �−q3 respectively. We use
the same notations as section 4.2, R

2
L, R

2
M and R

2
R for the regions. Obviously, γ ∩γ‖ ∩R

2
L and

γ ∩ γ‖ ∩R
2
R are empty. By the same arguments for L∩L∗ ∩R

2
+ in section 4.1, γ ∩ γ‖ ∩R

2
M is

{q1, q2 = q∗
1 } with q1 = (x0(a), f (x0(a))) where x = x0(a) is the only solution of g(x, a) = 0

in −a < x < 0. See appendix B.

11
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Figure 7. The case a0 < a � 1. The set γ ∩ γ‖ = {O, −q3} ∪ {q1, q2 = q∗
1 }. Two tangent lines

�0 and �−q3 split the plane R
2 into the open regions R

2
L, R

2
M, R

2
R and the lines. The non-trivial

pair {q1, q2} is in the region R
2
M .

Therefore, we conclude that the set γ ∩γ‖ has one trivial pair {O,−q3} and one non-trivial
pair {q1, q2 = q∗

1 } for the case a0 < a � 1. The smoothness and strong monotonicity of qi(a)

for i = 1, 2 are explicitly given by equation (B.19) in appendix B.

5. Summary and discussions

In this paper, we have shown that the motion of equal mass three bodies in a given curve is
uniquely determined as a choreography for the following two cases. (i) Convex curves that
have point symmetry with respect to the origin and non-vanishing angular momentum are
given. (ii) Eight-shaped curves and the energy constant are given.

For eight-shaped curves, condition (V) in section 4, the convexity of each lobe, is
numerically satisfied by the figure-eight solutions under homogeneous potential α−1rα with
α < 2 and proved for the Newtonian potential, −r−1, by Fujiwara and Montgomery [5].
Condition (VI) and all the other conditions are numerically satisfied by the figure-eight solution
for the Newtonian potential.

Moreover, theorem 5 holds for the lemniscate curve of Bernoulli although it does not
satisfy condition (VI) at a point x0 = √

5/32 = 0.395 285 . . . , i.e. f ′′′(x0) = 0. Therefore,
we know that the only possible motion of the equal mass three bodies in the lemniscate is
(x(τ (t)), y(τ (t))) with a smooth function τ(t) where

x(t) = sn(t)

1 + cn2(t)
y(t) = sn(t)sn(t)

1 + cn2(t)
, (40)

and, sn and cn are the Jacobian elliptic functions [6].
As for condition (VI), it seems too strong as we have seen in the proof of theorem 5. Also

we note that all conditions for the theorem are geometric except for this condition. To replace
this condition to more weak one and more geometric quantity is a future work.

For a general closed curve, which is not point symmetric, we can investigate the uniqueness
of the equal mass three-body motion in it in the same manner. First, we investigate a non-trivial
pair {q, q∗} for all q3 ∈ γ in corollary 3. This might be lengthy and tedious as we did in this
paper. However, once uniqueness and smoothness of the pair are found, the motion in such
a curve is determined uniquely modulo time re-parameterization, qi(t) �→ qi(σ (t)) with the
function σ(t).

12
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To determine the function σ(t), we can use the constancy of the angular momentum, like
Kepler did,

c =
∑

i=1,2,3

q(σ (t)) × dqi(σ (t))

dt
= dσ

dt

∑
i=1,2,3

q(σ ) × dqi(σ )

dσ
. (41)

The value of the constant angular momentum c is related to the total area S of the curve. If
the total area S is not zero, then c �= 0. Then equation (41) determines dσ/dt and the motion
qi(σ (t)) are determined completely. While if S = 0 like an eight-shaped curve, then c = 0.
Thus, equation (41) gives no information for dσ/dt . Then we can use the energy constant
assuming some potential energy V to determine σ(t) by the Hamiltonian, H = constant.
Thus, the motion qi(σ (t)) are determined completely.

The angular momentum and the Hamiltonian are invariant under the exchange of the
bodies 1 → 2 → 3 → 1. This invariance and the uniqueness of the motion yield the
three-body chase with an equal time spacing, namely ‘the choreography in the given curve’,
q1(t) = q(t), q2(t) = q(t + T/3), q3(t) = q(t + 2T/3).

Since the motion qi(t) is determined uniquely, the acceleration d2q(t)/dt2 is also
determined uniquely. Therefore, whether the equation of motion

d2qi(t)

dt2
= −∂V

∂qi

(42)

with an appropriate potential energy V is satisfied or not is a test whether the motion is actually
realized by the potential or not. However, in general, it is very hard to find the potential energy
V which realizes the three-body motion in given curves.

For the figure-eight solution, the shape of the curve that corresponds to Kepler’s first law
is not known. The three tangents theorem [5–7] is a strict constraint for the curve and would
be a clue to find it.

Finally, one may consider the general three-body problem in given curves, where the
masses and orbits of three bodies are not equal, using theorem 2.
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Appendix A. Number of cross points of convex curves γ and γ‖

Lemma 2. Consider a closed convex curve γ in R
2 that has at most two common points with

any line. Then the cross points of γ and its parallel translation γ‖ = {q − p|q ∈ γ } with
p �= 0 are at most 2.

Proof. Suppose there are three distinct points a1, a2 and a3 ∈ γ ∩ γ‖. Then, by the definition,
points a′

1 = a1 + p, a′
2 = a2 + p and a′

3 = a3 + p are also in γ . Therefore, the points
a1, a2, a3, a

′
1, a

′
2, a

′
3 are in γ .

Take a coordinate system whose x-axis is parallel to the line a′
iai so that the x components

of a′
i are larger than those of ai , namely x ′

i = xi + |p|. Then points ai and a′
i have the same y

component yi . Rename the points so that the y components of the points are y1 < y2 < y3.
(These values are distinct, otherwise more than three points are in a line.) Take an oblique
coordinates whose y-axis is parallel to the line a1a3. Then the components of the points
are a1 = (x, y1), a2 = (x2, y2), a3 = (x, y3), a

′
1 = (x + |p|, y1), a

′
2 = (x2 + |p|, y2), a

′
3 =

(x + |p|, y3).

13
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x

y

Figure A1. If the x-coordinate of a2 is smaller than that of a1 and a3, then the point a′
2 is inside

of the triangle a′
1a2a

′
3.

If x2 < x, then a′
2 is in the triangle a′

1a2a
′
3. See figure A1. If x < x2, then a2 is in the

triangle a1a
′
2a3. Both cases contradict to the convexity of the curve γ . If x2 = x, then three

points a1, a2 and a3 are in a line, which contradicts to the assumption of the lemma.
This contradiction comes from the assumption of the existence of the three distinct points

in γ ∩ γ‖. Thus, we prove this lemma. �

Note that if the curvature of a closed convex curve is not zero almost everywhere, then
the curve has at most two common points with any line. Therefore, the closed convex curve
in theorem 4, and the lobe R or L of the eight-shaped curve in theorem 5 satisfy the conditions
for this lemma.

Appendix B. Number of zeros for a function

Let f (x) be a function defined in the region 0 � x � 1 and satisfies the following properties:

f (0) = f (1) = 0, (B.1)

f (x) > 0, f ′′(x) < 0, f ′′′(x) < 0 for 0 < x < 1, (B.2)

and there exists a unique value a0 in 0 < a0 < 1 such that

f ′(a0) = −f ′(0) < 0. (B.3)

We define the following function g(x, a):

g(x, a) = f (−x) − f (x + a) + f (a), (B.4)

in the region 0 < a � 1,−a � x � 0. For a while, we consider the behavior of g(x, a) for
the fixed value of a. So, we simply write

g(x) = g(x, a) for fixed a (B.5)

and

g′(x) = ∂g(x, a)

∂x
. (B.6)

We will show that the number of solutions of g(x) = 0 in −a < x < 0 is zero for
0 < a � a0 and 1 for a0 < a � 1.
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Case i) 0 < a ≤ a0 g(x)

x
0−a −a/2

g(x)

x
0−a −a/2

Case ii) a0 < a < 1 g(x)

x
0

Case iii) a = 1

Figure B1. Schematic view of g(x) = f (−x) − f (x + a) + f (a). The curve (x, g(x))

is point symmetric with respect to (−a/2, g(−a/2)), namely, g(−x − a/2) − g(−a/2) =
−(g(x − a/2) − g(−a/2)).

Since,

g′′′(x) = −f ′′′(−x) − f ′′′(x + a) > 0 (B.7)

and

g′′(−a/2) = f ′′(a/2) − f ′′(a/2) = 0, (B.8)

we get

g′′(x) < 0 for − a � x < −a/2, (B.9)

g′′(x) > 0 for − a/2 < x � 0. (B.10)

Note that

g(−a) = 2f (a) � 0, (B.11)

g(−a/2) = f (a) � 0, (B.12)

g(0) = 0 (B.13)

and

g′(0) = −f ′(0) − f ′(a) = f ′(a0) − f ′(a) (B.14)

is an increasing function of a because f ′′(x) < 0.
We split the problem into three cases by the value of a. See figure B1.

(i) The case 0 < a � a0: we have g′(0) = f ′(a0) − f ′(a) � 0. Because f (a) > 0, we have
g(−a) > 0, g(−a/2) > 0 and g(0) = 0. Then inequalities (B.9) and (B.10) prove that
there is no solution of g(x) = 0 in −a < x < 0 in this case.

For the case a = a0, we have g(0) = g′(0) = 0 and g′′(0) > 0. Therefore, g(0) = 0
is a double root.

(ii) The case a0 < a < 1: we have g′(0) > 0, g(−a) > 0, g(−a/2) > 0 and g(0) = 0.
Therefore, inequalities (B.9) and (B.10) prove that there is no solution of g(x) = 0 in
−a < x � −a/2 and one solution in −a/2 < x < 0. Let us write the zero point x0(a).
Note that g′(x) at x = x0(a) is negative, namely

g′(x0(a)) = −f ′(−x0(a)) − f ′(x0(a) + a) < 0. (B.15)

(iii) The case a = 1: we have g(−a) = g(−a/2) = g(0) = 0. Therefore, equations (B.9) and
(B.10) prove that x = −a/2 is the only solution of g(x) = 0 in −a < x < 0. Inequality
(B.15) is also true for this case.
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Now, let us consider the behavior of the zero point of g for the range a0 < a � 1. To do
this, it is convenient to use the full expression g = g(x, a). Then we have

g(x0(a), a) = f (−x0(a)) − f (x0(a) + a) + f (a) = 0 (B.16)

for all a0 < a � 1. Then total derivative of this expression by a yields

0 = dg(x0(a), a)

da
= dx0(a)

da

∂g(x, a)

∂x
+

∂g(x, a)

∂a

∣∣∣∣
x=x0(a)

. (B.17)

Therefore,

dx0(a)

da
(f ′(−x0(a)) + f ′(x0(a) + a)) = f ′(a) − f ′(x0(a) + a). (B.18)

By (B.15), we have f ′(−x0(a)) + f ′(x0(a) + a) > 0. While f ′(a) − f ′(x0(a) + a) < 0 by
f ′′(x) < 0. Thus, we get

dx0(a)

da
< 0 for a0 < a � 1, (B.19)

namely the zero point of g(x) = 0 appears near the origin and moves to −1/2 smoothly and
strongly monotonically when a increases a0 to 1.
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